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Overview

• Force-free: j = σB and B · ∇σ = 0.

• Taylor state: σ is a global constant.

• Flux amplification in driven compact toroids
depends on the Jensen-Chu resonance.

• In Taylor’s theory, accessible magnetic configuration
bounded by the first Jensen-Chu resonance.

• Force-free but partially relaxed state (nonlinearity)
regularizes Jensen-Chu singularity.

• Additional accessible magnetic configurations.
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Force-free relaxed state

• Why force-free?

∇×B = σB, B · ∇σ = 0

– Transport is poor, so ∇p is small.
– Small electric field, so magnetic Mach number is

small.

• Taylor state: σ global constant.

– B · n|∂Ω = 0 : eigenvalue problem
– B · n|∂Ω 6= 0 : linear perturbation problem.

(singularity at resonance)

• Partially relaxed state: σ flux function.

– B · n|∂Ω = 0 : nonlinear problem (multiple
solution branch).

– B · n|∂Ω 6= 0 : nonlinear perturbation problem.
(singularity regularized)

– Contrary to Kitson-Browning result (1990).
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Jensen-Chu formulation

With the expansion (Jensen and Chu, 1984)

A = AI +
∑

ν

ανaν.

∇×∇×AI = 0, ∇×AI · n|∂Ω = B · n|∂Ω.

∇×∇× a = λν∇× aν, aν|∂Ω = 0.

Jensen-Chu solution

αν = σ
λν/|λν|

σ − λν

∫

aν · ∇ ×AIdV = σ
λν/|λν|

σ − λν
Iν,

Iν ≡

∫

aν · ∇ ×AIdV.

K =

∫

A · ∇ ×AdV =
∑

ν

I2
ν

λν

|λν|
[1−

λ2
ν

(σ − λν)2
] + KV .

E =
1

2

∫

(∇×AI)
2dV =

1

2

∑

ν

I2
ν |λν|

σ2

(σ − λν)2
+ EV .

Resonant: Iν 6= 0; Non-Resonant: Iν = 0.
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Axisymmetric, resonant case

Force-free Grad-Shafranov eq.

B = G(χ)∇ϕ +∇ϕ×∇χ.

y∆∗χ + GdG/dχ = ∆∗χ + σ2χ = 0.

Jensen-Chu decomposition

χ = χ0 +
∑

i

αiχi.

Vacuum field

∆∗χ0 = 0, χ0|∂Ω = χ|∂Ω.

Expansion bases

∆∗χi + σ2
i χi = 0, χi|∂Ω = 0.

Expansion coefficients and Jensen-Chu singularities

αi =
σ2

σ2
i − σ2

〈χ0χi〉
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Figure 1: Top: Magnetic energy versus σ0. Bottom:
flux contours, left: vacuum field, middle: σ0 = 4.75
(flux amplification), right: σ0 = 5.15 (flipped
spheromak)
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Force-free but partially relaxed

Slight deviation from Taylor state

σ(χ) = σ0(1 + ε
∑

i

ciχ
i), 0 < ε� 1.

Two distinct cases (All you need to know!)

• First order model (sustained and decaying)

σ(χ) = σ0(1 + εχ),

G(χ) = −σ0(χ +
1

2
εχ2).

• Second order model (sustained)

σ(χ) = σ0(1− εχ2)

G(χ) = −σ0(χ−
1

3
εχ3)
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First order model

Nonlinear G-S equation (full and truncated)

∆∗χ + σ2
0(1 +

3

2
εχ)χ = 0.

εσ2
0

〈

χ3
1

〉

α2
1 + (σ2

0 − σ2
1 + 2εσ2

0

〈

χ0χ
2
1

〉

)α1

+σ2
0 〈χ0χ1〉+ εσ2

0

〈

χ2
0χ1

〉

= 0.

• near resonance: σ0 ≈ σ1.

α1 = ±

√

−
〈χ0χ1〉

〈χ3
1〉

1

ε
+ o(ε0)

• away from resonance: σ2
0 − σ2

1 ∼ o(ε0)

αl
1 ≈ −

σ2
0 − σ2

1

εσ2
0 〈χ

3
1〉
← large amp. root

αs
1 ≈ −

σ2
0 〈χ0χ1〉

σ2
0 − σ2

1

← small amp. root
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Figure 2: Top: Magnetic energy of two branches of
solution versus σ0. Bottom left: flux amplification
factor versus ε scaling at and away from the resonance.
Bottom right: flux contours of red branch solution at
σ0 = 5.5 (no flip!)
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Second order model

Nonlinear G-S equation (full and truncated)

∆∗χ + σ2
0χ(1− εχ2)(1−

1

3
εχ2) = 0.

−εσ2
0

〈

χ4
1

〉

α3
1 − 3εσ2

0

〈

χ0χ
3
1

〉

α2
1

+(σ2
0 − σ2

1 − 3εσ2
0

〈

χ2
0χ

2
1

〉

)α1

+σ2
0 〈χ0χ1〉 − εσ2

0

〈

χ3
0χ1

〉

= 0

• near resonance: σ0 ≈ σ1.

α1 =
〈χ0χ1〉

1/3

〈χ4
1〉

1

ε1/3
+ o(ε0)

only one real root.

• away from resonance: σ2
0 − σ2

1 ∼ o(ε0)

– σ2
0 < σ2

1 : one real root
– σ2

0 > σ2
1 : three branches
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Second order model –continued

Away from resonance:

• σ2
0 < σ2

1 : one real root

α1 ≈ −
σ2

0

σ2
0 − σ2

1

〈χ0χ1〉

recovering the linear solution.

• σ2
0 > σ2

1 :

α
(1)
1 ≈ (

σ2
0 − σ2

1

σ2
0 〈χ

4
1〉

)
1/2

ε−1/2.

α
(2)
1 ≈ −α

(1)
1

α
(3)
1 ≈ −

σ2
0

σ2
0 − σ2

1

〈χ0χ1〉

α
(3)
1 recovers the linear result.
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Figure 3: Top: Magnetic energy of distinct branches
of solution versus σ0. Bottom left: flux amplification
factor versus ε scaling at and away from the resonance.
Bottom right: flux contours of red branch solution at
σ0 = 5.5 (no flip!)
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Conclusions

• Force-free: j = σB and B · ∇σ = 0.

• Taylor state: σ is a global constant.

• Flux amplification in driven compact toroids
depends on the Jensen-Chu resonance.

• In Taylor’s theory, accessible magnetic configuration
bounded by the first Jensen-Chu resonance.

• Force-free but partially relaxed state (nonlinearity)
regularizes Jensen-Chu singularity.

– Exact agreement between analytics (truncated
spectral model) and numerics (full model).

• Additional accessible magnetic configurations.

– The preferred branch of solution and transition
between branches of solution are issues to be
settled by dynamics.
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